If the rate of change is constant, then it is also called slope.

Slope is the average rate of change. It tells how steep a linear function is when graphed. It is represented by m.

(Side note: It is unsure why Americans use the letter m to represent slope. Slope comes from the Latin root “slupan,” for the word “slip.” Schools around the world use different letters, such as s, a, p, and k.)

How to Find Slope

$$m = \frac{\text{change in } y}{\text{change in } x} \text{ or } \frac{\Delta y}{\Delta x} \text{ or } \frac{y_2 - y_1}{x_2 - x_1} \text{ or } \frac{\text{rise}}{\text{run}}$$

(Another side note: Δ is the Greek letter delta, which means change)

Four Different Types of Slope

- **Positive**: Line rises to right
- **Negative**: Line rises to left
- **Zero**: Line is horizontal
- **Undefined**: Line is vertical (Not a function)
Example 1: Finding the Slope from a Graph

The table below shows the relationship between the number of seconds \(y \) it takes to hear the thunder after a lightning strike and the distance \(x \) you are from the lightning.

<table>
<thead>
<tr>
<th>Distance ((x))</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seconds ((y))</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
</tbody>
</table>

YOU TRY:

a. Graph the data.

b. Find the slope of the line. (You can simply read the slope from your graph here.)

\[m = \frac{\text{change in } y}{\text{change in } x} = \frac{\text{rise}}{\text{run}} = \]

c. Interpret the slope. What does it mean in the context of the problem?

YOU TRY:

Find the rate of change (slope) for each line.
Example 2: Finding the Slope through Given Points
The table below shows the distance y Cheryl traveled in x minutes while competing in the cycling portion of a triathlon. We know she travels at a constant rate of change. (So, these points would form a line.)

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>45</th>
<th>90</th>
<th>135</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (km)</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
</tbody>
</table>

a. Find the slope of this linear function.

Pick any two points to calculate the slope.
(5, 45) and (15, 135) are fine

You need to calculate the change in y and the change in x here. It doesn’t matter which point is considered #1 or #2. You need to subtract using the same ordering.

$$m = \frac{\text{change in } y}{\text{change in } x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{135 - 45}{15 - 5} = \frac{90}{10} = 9$$

b. **YOU TRY:** Interpret the slope. What does it mean in the context of the problem?

YOU TRY:

a. Find the slope of the line that passes through the given points. Distance in inches is x, and distance in miles is y.

<table>
<thead>
<tr>
<th>Distance on Map (in.)</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Distance (mi)</td>
<td>40</td>
<td>80</td>
<td>120</td>
<td>160</td>
</tr>
</tbody>
</table>

b. Interpret the slope. What does it mean in the context of the problem?

Example 3: Find the Slope through Two Points
Find the slope of the line that passes through (-2, 0) and (1, 5).

You need to calculate the change in y and the change in x here. It doesn’t matter which point is considered #1 or #2. You need to subtract using the same ordering.

$$m = \frac{\text{change in } y}{\text{change in } x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 0}{1 - -2} = \frac{5}{1+2} = \frac{5}{3}$$
YOU TRY:
Find the slope of the line that passes through each pair of points.

a. (-3, 4) and (2, -3)
b. (-3, -1) and (2, -1)
c. (-2, 4) and (-2, -3)
d. (3, 6) and (4, 8)
e. (-4, -2) and (0, -2)
f. (-4, 2) and (-2, 10)
g. (6, 7) and (-2, 7)