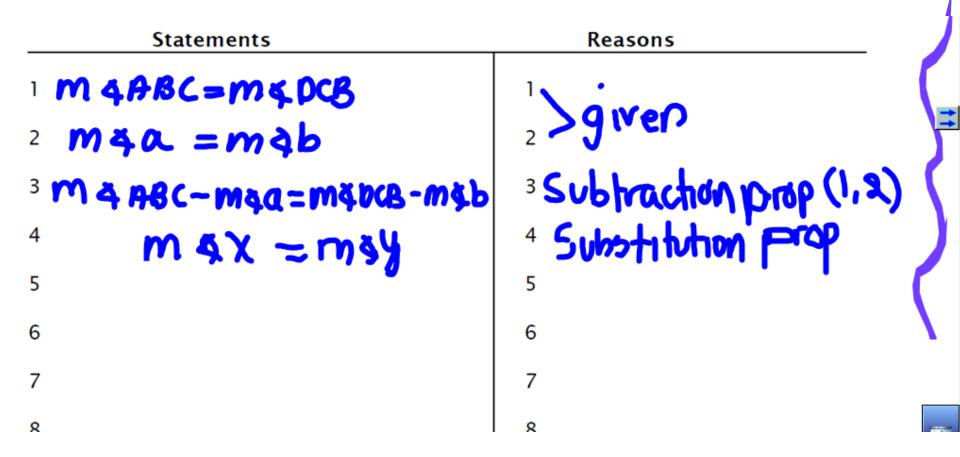
Geometric Proofs Involving Complementary and Supplementary Angles A October 18, 2010

<u>Warm - Up</u>

Given: $m \angle ABC = m \angle DCB.$ $m \angle a = m \angle b.$

Prove:

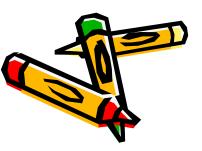
 $m \angle x = m \angle y$.



Proving Angle Relationships

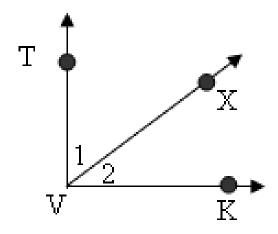
The two postulates can be used to prove the following two theorems.

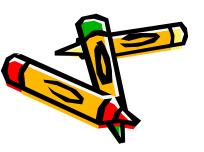
Supplement Theorem	If two angles form a linear pair, then they are supplementary angles. Example: If $\angle 1$ and $\angle 2$ form a linear pair, then $m \angle 1 + m \angle 2 = 180$.	D 1 $2A$ B C	
Complement Theorem	If the noncommon sides of two adjacent angles form a right angle, then the angles are complementary angles. Example: If $\overrightarrow{GF} \perp \overrightarrow{GH}$, then $m \angle 3 + m \angle 4 = 90$.		



Given: $\angle TVK$ is a right angle.

Prove: $\angle 1$ is complementary to $\angle 2$.





Т

υ

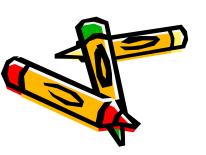
К

- Given: $\angle TVK$ is a right angle.
- Prove: $\angle 1$ is complementary to $\angle 2$.

Statements	Reasons
1. \angle TVK is a right angle.	1. Given
2. m ∠TVK = 90°	2. A right angle measures 90 °
3. ∠1 + ∠2 = ∠ T VK	3. Angle Addition Postulate
4. ∠1 + ∠2 = 90°	4. Substitution
5. $\angle 1$ is complementary to $\angle 2$.	5. Definition of Complementary ∠s

Ā

Given: $\angle ABC$ is a straight angle Prove: $\angle 1$ is supplementary to $\angle 2$.

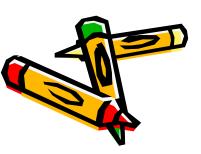


Given: $\angle ABC$ is a straight angle Prove: $\angle 1$ is supplementary to $\angle 2$.

Statements	Reasons
1. $\angle ABC$ is a straight angle	1. Given
2. $\angle 1 + \angle 2 = \angle ABC$	2. Angle Addition Postulate
 ∠1 and ∠2 form a Linear pair 	3. Definition of Linear Pairs
4. $\angle 1$ is supplementary to $\angle 2$	4. Linear Pairs form supplementary angles.

Congruent and Right Angles The Reflexive Property of Congruence, Symmetric Property of Congruence, and Transitive Property of Congruence all hold true for angles. The following theorems also hold true for angles.

Angles supplement to the same angle or congruent angles are congruent.
Angles complement to the same angle or to congruent angles are congruent.
If two angles are vertical angles, then they are congruent.
Perpendicular lines intersect to form four right angles.
All right angles are congruent.
Perpendicular lines form congruent adjacent angles.
If two angles are congruent and supplementary, then each angle is a right angle.
If two congruent angles form a linear pair, then they are right angles.

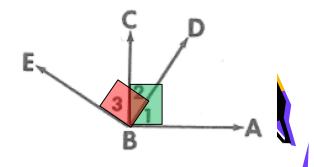


C

3.	Given: $\angle 1$ is complementary to $\angle 2$. $\angle 3$ is complementary to $\angle 2$. Prove: $\angle 1 \cong \angle 3$. Statements	E GO 30 D Restor B A Reasons
2	4.1 is compl. to 4.2 4.3 is compl. to 4.2 M 4.1 + m 4.2 = 90 M 4.3 + m 4.2 = 90 M 4.3 + m 4.2 = 90 M 4.1 + m 4.2 = m 4.3 + m 4.2 M 4.1 + m 4.2 = m 4.3 + m 4.2 M 4.1 = m 4.3 A 1 = 4.3 I = 4.3	$\frac{1}{2} \rightarrow given$ $\frac{3}{4} \rightarrow def. of compl.$ $\frac{5 \text{ Substitution}(3,4)}{6 \text{ Subtraction prop.}}$ $\frac{7 \text{ def. of } \cong x's}{8}$

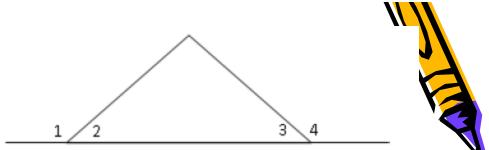
3. Given: $\angle 1$ is complementary to $\angle 2$. $\angle 3$ is complementary to $\angle 2$.

Prove: $\angle 1 \cong \angle 3$.



Statements	Reasons	
1. $\angle 1$ is complementary to $\angle 2$	1. given	
$\angle 3$ is complementary to $\angle 2$		
2. ∠1 ≅ ∠3	2. \cong Complements Theorem	

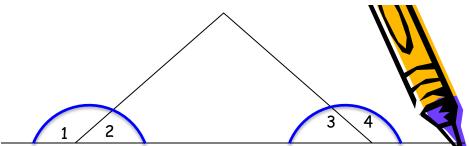
4. Given: $\angle 1 \cong \angle 4$ Prove: $\angle 2 \cong \angle 3$



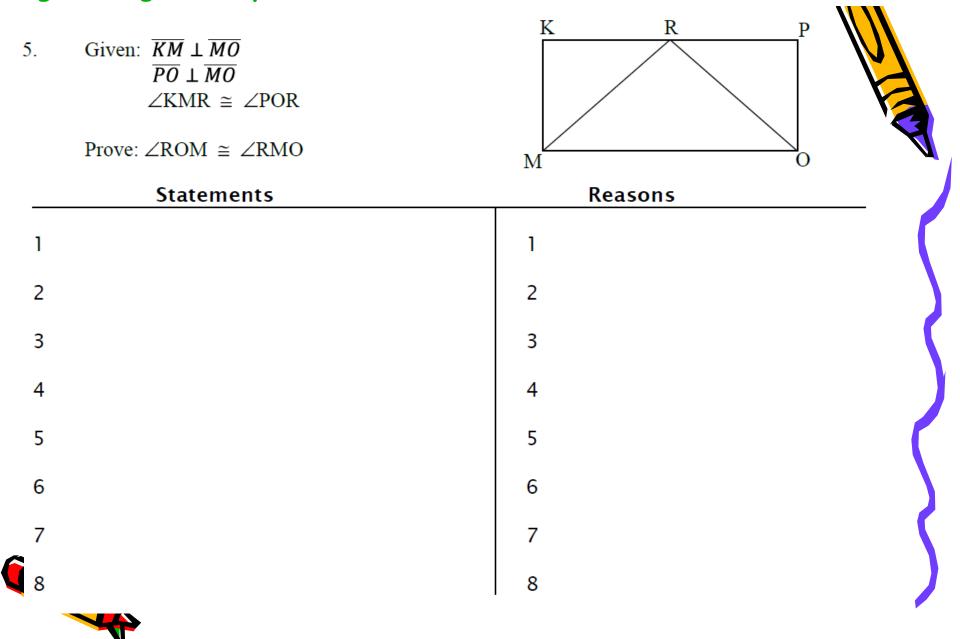
Statements	Reasons	/
1	1	
2	2	
3	3	(
4	4	
5	5	
6	6	
7	7	
8	8)
		,

Given:
$$\angle 1 \cong \angle 4$$

Prove: $\angle 2 \cong \angle 3$



Statements	Reasons	
1. $\angle 1 \cong \angle 4$	1. given	
 ∠1 and ∠2 form a Linear pair 	2. Definition of Linear Pair	
∠3 and ∠4 form a Linear pair		
3. \swarrow 1 is suppl. to $\angle 2$ $\angle 3$ is suppl. to $\swarrow 4$	3. Linear Pairs form Supplementary angles.	
4. ∠2 ≅ ∠3	4. ≅ Supplements Theorem	



5. Given: $\overline{KM} \perp \overline{M0}$ $\overline{P0} \perp \overline{M0}$ $\angle KMR \cong \angle POR$ Prove: $\angle ROM \cong \angle RMO$	
Statements	Reasons
$1. \qquad \overline{KM} \perp \overline{MO} \\ \overline{PO} \perp \overline{MO} \\ \angle KMR \cong \angle POR$	1. given
 ∠KMO and ∠POM are right angles 	2. Definition of \perp lines
3. ∠KMO ≅ ∠POM	3. All right Angles are ≅
4. ∠KMO - ∠KMR ≅ ∠POM - ∠RMO	4. Subtraction Property (3, 1)
5. ∠RMO ≅ ∠ROM	5. Substitution Property
6. ∠ROM ≅ ∠RMO	6. Symmetric Property

5. Given: $\overline{KM} \perp \overline{M0}$ $\overline{P0} \perp \overline{M0}$ $\angle KMR \cong \angle POR$	
Prove: ∠ROM ≅ ∠RMO Statements	
1. $\overline{KM} \perp \overline{M0}$ $\overline{P0} \perp \overline{M0}$ $\swarrow KMR \cong \angle POR$	1. given
 ∠KMO is a right angle ∠POM is a right angle 	2. Definition of \perp lines
3. ∠KMO ≅ 90° ∠POM ≅ 90°	3. Right \angle s are \cong to 90°
4. $\angle KMR + \angle RMO \cong \angle KMO$ $\angle POR + \angle ROM \cong \angle POM$	4. Angle Addition Postulate
5. $\angle KMR + \angle RMO \cong 90$ $\angle POR + \angle ROM \cong 90$	5. Substitution (3 into 4)
5. KMR is compl. to $\angle RMO$ $\angle POR$ is compl. to $\angle ROM$	5. Definition of Complementary ∠s
6. ∠ROM ≅ ∠RMO	6. \cong Complements Theorem