Solving Quadratic Equations using Quadratic Formula

Given an equation in standard form, $y = ax^2 + bx + c$, you can solve for x using the quadratic equation.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example: Solve $3x^2 - 5x = 2$

$$3x^{2} - 5x - 2 = 0$$

$$a = \qquad b = \qquad c = \qquad \downarrow$$

$$x = \qquad \downarrow$$

Find the solution(s) to each equation.

1)
$$6p^2 - 2p - 3 = 0$$

2) $-2x^2 - x - 1 = 0$

3)
$$-4m^2 - 4m + 5 = 0$$

4) $5b^2 + b - 2 = 0$

5)
$$r^2 + 5r + 2 = 0$$

6) $2p^2 + 5p - 4 = 0$

7)
$$9n^2 - 3n - 8 = -10$$

8) $-2x^2 - 8x - 14 = -6$

9)
$$9m^2 + 6m + 6 = 5$$
 10) $4a^2 = 8a - 4$

Discriminant:

The discriminant can help us determine the type and number of solutions the function has.

 $Discriminant = b^2 - 4ac$ (comes from quadratic formula)

Value of Discriminant	Type & Number of Solutions	Examples of Graph
$b^2 - 4ac > 0$	Two Real Solutions	There are two x-intercepts.
$b^2-4ac=0$	One Real Solution	There is one x-intercept.
$b^2 - 4ac < 0$	no real solutions	There are no x-intercepts.

Example:

Determine the number of solutions the function has.

 $y = x^2 + 6x + 8$

Find the value of the discriminant. Then find the number and type of solutions for each equation.

1)
$$6p^2 - 2p - 3 = 0$$

2) $-2x^2 - x - 1 = 0$

3)
$$-4m^2 - 4m + 5 = 0$$

4) $5b^2 + b - 2 = 0$

5)
$$r^2 + 5r + 2 = 0$$

6) $2p^2 + 5p - 4 = 0$

Find the solution(s) to each equation.

7)
$$9n^2 - 3n - 8 = -10$$

8) $-2x^2 - 8x - 14 = -6$

9)
$$9m^2 + 6m + 6 = 5$$
 10) $4a^2 = 8a - 4$