Solving Quadratic Equations using Quadratic Formula

Given an equation in standard form, $y=a x^{2}+b x+c$, you can solve for x using the quadratic equation.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example: Solve $3 x^{2}-5 x=2$

$$
\begin{aligned}
& 3 x^{2}-5 x-2=0 \\
& a=\quad b=\quad c= \\
& x= \\
& \downarrow= \\
& x= \\
& \downarrow= \\
& x= \\
& x=
\end{aligned}
$$

Find the solution(s) to each equation.

1) $6 p^{2}-2 p-3=0$
2) $-2 x^{2}-x-1=0$
3) $-4 m^{2}-4 m+5=0$
4) $5 b^{2}+b-2=0$
5) $r^{2}+5 r+2=0$
6) $2 p^{2}+5 p-4=0$
7) $9 n^{2}-3 n-8=-10$
8) $-2 x^{2}-8 x-14=-6$
9) $9 m^{2}+6 m+6=5$
10) $4 a^{2}=8 a-4$

Discriminant:

The discriminant can help us determine the type and number of solutions the function has.

$$
\text { Discriminant }=b^{2}-4 a c \quad \text { (comes from quadratic formula) }
$$

Value of Discriminant	Type \& Number of Solutions	Examples of Graph
$b^{2}-4 a c>0$	Two Real Solutions	
$b^{2}-4 a c=0$	One Real Solution	
$b^{2}-4 a c<0$		

Example:

Determine the number of solutions the function has.

$$
y=x^{2}+6 x+8
$$

Find the value of the discriminant. Then find the number and type of solutions for each equation.

1) $6 p^{2}-2 p-3=0$
2) $-2 x^{2}-x-1=0$
3) $-4 m^{2}-4 m+5=0$
4) $5 b^{2}+b-2=0$
5) $r^{2}+5 r+2=0$
6) $2 p^{2}+5 p-4=0$

Find the solution(s) to each equation.
7) $9 n^{2}-3 n-8=-10$
8) $-2 x^{2}-8 x-14=-6$
9) $9 m^{2}+6 m+6=5$
10) $4 a^{2}=8 a-4$

